Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

MPC with learning properties applied to finite-horizon repetitive systems

Título del libro: Frontiers in Advanced Control System

Adam, Eduardo JoseIcon ; González, Alejandro HernánIcon
Otros responsables: de Oliveira Serra, Ginalber Luiz
Fecha de publicación: 2012
Editorial: IntechOpen
ISBN: 978-953-51-0677-7
Idioma: Inglés
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

A repetitive system is one that continuously repeats a finite-duration procedure (operation) along the time. This kind of systems can be found in several industrial fields such as robot manipulation ((Tan, Huang, Lee & Tay, 2003)), injection molding ((Yao, Gao & Allgöwer, 2008)), batch processes ((Bonvin et al., 1984; Lee & Lee, 1999)) and semiconductor processes ((Moyne, Castillo, & Hurwitz, 2003)). Because of the repetitive characteristic, these systems have two count indexes or time scales: o e for the time running within the interval each operation lasts, and the other for the number of operations or repetitions in the continuous sequence. Consequently, it can be said that a control strategy for repetitive systems requires accounting for two different objectives: a short-term disturbance rejection during a finite-duration single operation in the continuous sequence (this frequently means the tracking of a predetermined optimal trajectory) and the long-term disturbance rejection from operation to operation (i.e., considering each operation as a single point of a continuous process1). The MPC proposed in this Chapter is formulated under a closed-loop paradigm ((Rossiter, 2003)). The basic idea of a closed-loop paradigm is to choose a stabilizing control law and assume that this law (underlying input sequence) is present throughout the predictions. More precisely, the MPC propose here is an Infinite Horizon MPC (IHMPC) that includes an underlying control sequence as a (deficient) reference candidate to be improved for the tracking control. Then, by solving on line a constrained optimization problem, the input sequence is corrected, and so the learning updating is performed.
Palabras clave: MODEL PREDICTIVE CONTROL , REPETITIVE SYSTEMS , LEARNING PROPERTIES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 693.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/110188
URL: https://www.intechopen.com/books/frontiers-in-advanced-control-systems
URL: https://www.intechopen.com/books/frontiers-in-advanced-control-systems/iterative
Colecciones
Capítulos de libros(INTEC)
Capítulos de libros de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Adam, Eduardo Jose; González, Alejandro Hernán; MPC with learning properties applied to finite-horizon repetitive systems; IntechOpen; 2012; 193-213
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES