Mostrar el registro sencillo del ítem
dc.contributor.author
Sousa, Rosilda B. de
dc.contributor.author
Pereira, Emeson J. S.
dc.contributor.author
Cipolletti, Marina Paola
dc.contributor.author
Ferreira, Tiago A. E.
dc.date.available
2020-07-22T15:42:31Z
dc.date.issued
2019-02-25
dc.identifier.citation
Sousa, Rosilda B. de; Pereira, Emeson J. S.; Cipolletti, Marina Paola; Ferreira, Tiago A. E.; A proposal of quantum data representation to improve the discrimination power; Springer; Natural Computing; 19; 25-2-2019; 1-15
dc.identifier.issn
1572-9796
dc.identifier.uri
http://hdl.handle.net/11336/109866
dc.description.abstract
This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLASSIFICATION
dc.subject
DATA DISCRIMINATION POWER
dc.subject
MACHINE LEARNING
dc.subject
PREPROCESSING DATA
dc.subject
QUANTUM REPRESENTATION
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A proposal of quantum data representation to improve the discrimination power
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-26T19:55:04Z
dc.journal.volume
19
dc.journal.pagination
1-15
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Sousa, Rosilda B. de. Universidade Federal do Cariri. Centro de Ciências e Tecnologia; Brasil
dc.description.fil
Fil: Pereira, Emeson J. S.. Universidad Federal Rural Pernambuco; Brasil
dc.description.fil
Fil: Cipolletti, Marina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.description.fil
Fil: Ferreira, Tiago A. E.. Universidad Federal Rural Pernambuco; Brasil
dc.journal.title
Natural Computing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11047-019-09734-w
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11047-019-09734-w
Archivos asociados