Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A proposal of quantum data representation to improve the discrimination power

Sousa, Rosilda B. de; Pereira, Emeson J. S.; Cipolletti, Marina PaolaIcon ; Ferreira, Tiago A. E.
Fecha de publicación: 25/02/2019
Editorial: Springer
Revista: Natural Computing
ISSN: 1572-9796
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.
Palabras clave: CLASSIFICATION , DATA DISCRIMINATION POWER , MACHINE LEARNING , PREPROCESSING DATA , QUANTUM REPRESENTATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.687Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/109866
URL: https://link.springer.com/article/10.1007/s11047-019-09734-w
DOI: http://dx.doi.org/10.1007/s11047-019-09734-w
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Sousa, Rosilda B. de; Pereira, Emeson J. S.; Cipolletti, Marina Paola; Ferreira, Tiago A. E.; A proposal of quantum data representation to improve the discrimination power; Springer; Natural Computing; 19; 25-2-2019; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES