Mostrar el registro sencillo del ítem

dc.contributor.author
Levis, Fabián Eduardo  
dc.date.available
2020-07-21T22:08:22Z  
dc.date.issued
2010-02  
dc.identifier.citation
Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-251  
dc.identifier.issn
0021-9045  
dc.identifier.uri
http://hdl.handle.net/11336/109833  
dc.description.abstract
Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ORLICZ-LORENTZ SPACES  
dc.subject
MAXIMAL FUNCTIONS  
dc.subject
BEST CONTANT APPROXIMANT  
dc.subject
A. E. CONVERGENCE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-20T20:23:34Z  
dc.journal.volume
162  
dc.journal.number
2  
dc.journal.pagination
239-251  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Ohio  
dc.description.fil
Fil: Levis, Fabián Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal Of Approximation Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jat.2009.04.005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904509000926