Artículo
Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications
Fecha de publicación:
02/2010
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal Of Approximation Theory
ISSN:
0021-9045
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let 00, denote a net of intervals of the form (x-epsilon,x+epsilon) subset [0,alpha). Let f^{epsilon}(x) be any best constant approximation of f in Lambda_{w,phi´} on B(x,epsilon). Weak inequalities for maximal functions associated with {f^{epsilon}(x)}_epsilon, in Orlicz-Lorentz spaces, are proved. As a consequence of these inequalities we obtain a generalization of Lebesgue´s Differentiation Theorem and the pointwise convergence of f^{epsilon}(x) to f(x), as epsilon tends to 0.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Levis, Fabián Eduardo; Weak inequalities for maximal functions in Orlicz–Lorentz spaces and applications; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 162; 2; 2-2010; 239-251
Compartir
Altmétricas