Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Stojanoff, Demetrio  
dc.date.available
2020-07-16T20:51:01Z  
dc.date.issued
2003-03  
dc.identifier.citation
Andruchow, Esteban; Stojanoff, Demetrio; Nilpotents in finite algebras; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 45; 3; 3-2003; 251-267  
dc.identifier.issn
0378-620X  
dc.identifier.uri
http://hdl.handle.net/11336/109495  
dc.description.abstract
We study the set of nilpotents t (t^n=0) of a type $II_1 von Neumann  algebra A which verify that t^{n-1}+t* is invertible. These are shown to be all similar in A. The set of all such operators, named by D.A. Herrero very nice Jordan nilpotents, forms a simply connected smooth submanifold of A in the norm topology. Nilpotents are related to systems of projectors, i.e. n-tuples (p_1,...,p_n) of mutually orthogonal projections of the algebra which sum 1, via the map φ(t)=(P_{ker t},P_{ker t^2}-P_{ker t},...,P_{ker t^{n-1}}-P_{ker t^{n-2}},1-P_{ker t^{n-1}}). The properties of this map, called the canonical decomposition of nilpotents in the literature, are examined.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NILPOTENT OPERATOR  
dc.subject
FINITE ALGEBRA  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nilpotents in finite algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-01T17:14:51Z  
dc.identifier.eissn
1420-8989  
dc.journal.volume
45  
dc.journal.number
3  
dc.journal.pagination
251-267  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Integral Equations and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s000200300004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s000200300004