Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandes, David Douglas de Sousa
dc.contributor.author
Romeo, Florencia
dc.contributor.author
Krepper, Gabriela
dc.contributor.author
Di Nezio, Maria Susana
dc.contributor.author
Pistonesi, Marcelo Fabian
dc.contributor.author
Centurión, María Eugenia
dc.contributor.author
Ugulino de Araújo, Mário César
dc.contributor.author
de Araújo, Mário César Ugulino
dc.contributor.author
Goncalves Dias Diniz, Paulo Henrique
dc.date.available
2020-07-14T13:04:50Z
dc.date.issued
2019-02-19
dc.identifier.citation
Fernandes, David Douglas de Sousa; Romeo, Florencia; Krepper, Gabriela; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; et al.; Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools; Elsevier Science; LWT - Food Science and Technology; 100; 19-2-2019; 20-27
dc.identifier.issn
0023-6438
dc.identifier.uri
http://hdl.handle.net/11336/109204
dc.description.abstract
In this work, we developed an eco-friendly methodology for quantification and identification of adulteration in the fat content of chicken hamburgers by combining color histograms (in RGB, HSI, and Grayscale channels) obtained from digital images and chemometric tools. For this, 74 samples of chicken hamburgers with a fat content of 14.27–47.55% (w w−1) were studied, taking into account adulterations with a fat content higher than 20% (w w−1), as limited by Argentinean legislation. In both quantitative and qualitative approaches, chemometric models containing HSI histograms achieved the best results, because this is very suitable in situations where there is a need to separate the chromaticity from the intensity. In other words, the opacity of the sample surfaces increases with increasing fat content. PLS/HSI achieved the best quantification result with a R2 of 0.95, RMSEP of 2.01% w w−1, REP of 7.26% w w−1 and RPD of 4.47 in the prediction set, while SPA-LDA/Grayscale + HSI reached the most satisfactory in the test set with only one misclassified sample. Therefore, the proposed methodologies represent excellent alternatives to conventional Soxhlet extraction method, since they follow the primary principles of Green Analytical Chemistry, avoiding waste generation, besides not using either chemical reagents or solvents.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ADULTERATION
dc.subject
CHEMOMETRICS
dc.subject
FAT CONTENT
dc.subject
FOOD QUALITY
dc.subject
MEAT
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-26T20:17:22Z
dc.journal.volume
100
dc.journal.pagination
20-27
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Fernandes, David Douglas de Sousa. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Romeo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Krepper, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Di Nezio, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Centurión, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Ugulino de Araújo, Mário César. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: de Araújo, Mário César Ugulino. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Goncalves Dias Diniz, Paulo Henrique. Universidade Federal da Bahia; Brasil
dc.journal.title
LWT - Food Science and Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0023643818308806
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.lwt.2018.10.034
Archivos asociados