Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools

Fernandes, David Douglas de Sousa; Romeo, Florencia; Krepper, GabrielaIcon ; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; Centurión, María Eugenia; Ugulino de Araújo, Mário César; de Araújo, Mário César Ugulino; Goncalves Dias Diniz, Paulo Henrique
Fecha de publicación: 19/02/2019
Editorial: Elsevier Science
Revista: LWT - Food Science and Technology
ISSN: 0023-6438
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In this work, we developed an eco-friendly methodology for quantification and identification of adulteration in the fat content of chicken hamburgers by combining color histograms (in RGB, HSI, and Grayscale channels) obtained from digital images and chemometric tools. For this, 74 samples of chicken hamburgers with a fat content of 14.27–47.55% (w w−1) were studied, taking into account adulterations with a fat content higher than 20% (w w−1), as limited by Argentinean legislation. In both quantitative and qualitative approaches, chemometric models containing HSI histograms achieved the best results, because this is very suitable in situations where there is a need to separate the chromaticity from the intensity. In other words, the opacity of the sample surfaces increases with increasing fat content. PLS/HSI achieved the best quantification result with a R2 of 0.95, RMSEP of 2.01% w w−1, REP of 7.26% w w−1 and RPD of 4.47 in the prediction set, while SPA-LDA/Grayscale + HSI reached the most satisfactory in the test set with only one misclassified sample. Therefore, the proposed methodologies represent excellent alternatives to conventional Soxhlet extraction method, since they follow the primary principles of Green Analytical Chemistry, avoiding waste generation, besides not using either chemical reagents or solvents.
Palabras clave: ADULTERATION , CHEMOMETRICS , FAT CONTENT , FOOD QUALITY , MEAT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.548Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/109204
URL: https://www.sciencedirect.com/science/article/pii/S0023643818308806
DOI: http://dx.doi.org/10.1016/j.lwt.2018.10.034
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Fernandes, David Douglas de Sousa; Romeo, Florencia; Krepper, Gabriela; Di Nezio, Maria Susana; Pistonesi, Marcelo Fabian; et al.; Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools; Elsevier Science; LWT - Food Science and Technology; 100; 19-2-2019; 20-27
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES