Mostrar el registro sencillo del ítem

dc.contributor.author
Wang, Liping  
dc.contributor.author
Amalric, Marie  
dc.contributor.author
Fang, Wen  
dc.contributor.author
Jiang, Xinjian  
dc.contributor.author
Pallier, Christophe  
dc.contributor.author
Figueira, Santiago  
dc.contributor.author
Sigman, Mariano  
dc.contributor.author
Dehaene, Stanislas  
dc.date.available
2020-07-08T20:42:32Z  
dc.date.issued
2019-02  
dc.identifier.citation
Wang, Liping; Amalric, Marie; Fang, Wen; Jiang, Xinjian; Pallier, Christophe; et al.; Representation of spatial sequences using nested rules in human prefrontal cortex; Academic Press Inc Elsevier Science; Journal Neuroimag; 186; 2-2019; 245-255  
dc.identifier.issn
1053-8119  
dc.identifier.uri
http://hdl.handle.net/11336/109134  
dc.description.abstract
Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants’ behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple “language of geometry” which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processing  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
spatial sequences  
dc.subject
human prefrontal cortex  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Representation of spatial sequences using nested rules in human prefrontal cortex  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-08T18:55:07Z  
dc.journal.volume
186  
dc.journal.pagination
245-255  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Wang, Liping. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Amalric, Marie. Collége de France; Francia. Université Paris Sud; Francia. Sorbonne University; Francia  
dc.description.fil
Fil: Fang, Wen. East China Normal University.; China  
dc.description.fil
Fil: Jiang, Xinjian. East China Normal University.; China  
dc.description.fil
Fil: Pallier, Christophe. Université Paris Sud; Francia. Sorbonne University; Francia  
dc.description.fil
Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto Tecnológico de Buenos Aires. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sigman, Mariano. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Dehaene, Stanislas. Collége de France; Francia. Université Paris Sud; Francia  
dc.journal.title
Journal Neuroimag  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811918320330  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.neuroimage.2018.10.061