Mostrar el registro sencillo del ítem
dc.contributor.author
Wang, Liping
dc.contributor.author
Amalric, Marie
dc.contributor.author
Fang, Wen
dc.contributor.author
Jiang, Xinjian
dc.contributor.author
Pallier, Christophe
dc.contributor.author
Figueira, Santiago
dc.contributor.author
Sigman, Mariano
dc.contributor.author
Dehaene, Stanislas
dc.date.available
2020-07-08T20:42:32Z
dc.date.issued
2019-02
dc.identifier.citation
Wang, Liping; Amalric, Marie; Fang, Wen; Jiang, Xinjian; Pallier, Christophe; et al.; Representation of spatial sequences using nested rules in human prefrontal cortex; Academic Press Inc Elsevier Science; Journal Neuroimag; 186; 2-2019; 245-255
dc.identifier.issn
1053-8119
dc.identifier.uri
http://hdl.handle.net/11336/109134
dc.description.abstract
Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants’ behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple “language of geometry” which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processing
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
spatial sequences
dc.subject
human prefrontal cortex
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Representation of spatial sequences using nested rules in human prefrontal cortex
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-08T18:55:07Z
dc.journal.volume
186
dc.journal.pagination
245-255
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Wang, Liping. Chinese Academy of Sciences; República de China
dc.description.fil
Fil: Amalric, Marie. Collége de France; Francia. Université Paris Sud; Francia. Sorbonne University; Francia
dc.description.fil
Fil: Fang, Wen. East China Normal University.; China
dc.description.fil
Fil: Jiang, Xinjian. East China Normal University.; China
dc.description.fil
Fil: Pallier, Christophe. Université Paris Sud; Francia. Sorbonne University; Francia
dc.description.fil
Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto Tecnológico de Buenos Aires. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Sigman, Mariano. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Dehaene, Stanislas. Collége de France; Francia. Université Paris Sud; Francia
dc.journal.title
Journal Neuroimag
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811918320330
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.neuroimage.2018.10.061
Archivos asociados