Artículo
Supports for minimal hermitian matrices
Fecha de publicación:
01/2020
Editorial:
Elsevier Science Inc
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study certain pairs of subspaces V and W of C^n we call supports that consist of eigenspaces of the eigenvalues ±‖M‖ of a minimal hermitian matrix M(‖M‖ ≤‖M+D‖ for all real diagonals D). For any pair of orthogonal subspaces we define a non negative invariant δ called the adequacy to measure how close they are to form a support and to detect one. This function δ is the minimum of another map F defined in a product of spheres of hermitian matrices. We study the gradient, Hessian and critical points of F in order to approximate δ. These results allow us to prove that the set of supports has interior points in the space of flag manifolds.
Palabras clave:
MINIMAL HERMITIAN MATRIX
,
DIAGONAL MATRICES
,
FLAG MANIFOLDS
,
GEOMETRY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Mendoza, Alberto; Recht, Lázaro; Varela, Alejandro; Supports for minimal hermitian matrices; Elsevier Science Inc; Linear Algebra and its Applications; 584; 1-2020; 458-482
Compartir
Altmétricas