Mostrar el registro sencillo del ítem
dc.contributor.author
Pividori, Milton Damián
dc.contributor.author
Cernadas, Andrés
dc.contributor.author
de Haro, Luis Alejandro
dc.contributor.author
Carrari, Fernando Oscar
dc.contributor.author
Stegmayer, Georgina
dc.contributor.author
Milone, Diego Humberto
dc.date.available
2020-07-06T16:16:35Z
dc.date.issued
2019-06
dc.identifier.citation
Pividori, Milton Damián; Cernadas, Andrés; de Haro, Luis Alejandro; Carrari, Fernando Oscar; Stegmayer, Georgina; et al.; Clustermatch: discovering hidden relations in highly diverse kinds of qualitative and quantitative data without standardization; Oxford University Press; Bioinformatics (Oxford, England); 35; 11; 6-2019; 1931-1939
dc.identifier.issn
1367-4803
dc.identifier.uri
http://hdl.handle.net/11336/108897
dc.description.abstract
Motivation: Heterogeneous and voluminous data sources are common in modern datasets, particularlyin systems biology studies. For instance, in multi-holistic approaches in the fruit biology field, data sourcescan include a mix of measurements such as morpho-agronomic traits, different kinds of molecules (nucleicacids and metabolites) and consumer preferences. These sources not only have different types of data(quantitative and qualitative), but also large amounts of variables with possibly non-linear relationshipsamong them. An integrative analysis is usually hard to conduct, since it requires several manualstandardization steps, with a direct and critical impact on the results obtained. These are important issuesin clustering applications, which highlight the need of new methods for uncovering complex relationshipsin such diverse repositories.Results: We designed a new method named Clustermatch to easily and efficiently perform data-miningtasks on large and highly heterogeneous datasets. Our approach can derive a similarity measure betweenany quantitative or qualitative variables by looking on how they influence on the clustering of the biologicalmaterials under study. Comparisons with other methods in both simulated and real datasets show thatClustermatch is better suited for finding meaningful relationships in complex datasets.Availability: Files can be downloaded from https://sourceforge.net/projects/sourcesinc/files/clustermatch/and https://bitbucket.org/sinc-lab/clustermatch/.In addition,a web-demo is available athttp://sinc.unl.edu.ar/web-demo/clustermatch/
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLUSTERING
dc.subject
HETEROGENEOUS DATA SOURCES
dc.subject
DATA FUSION
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Clustermatch: discovering hidden relations in highly diverse kinds of qualitative and quantitative data without standardization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-01T20:03:59Z
dc.journal.volume
35
dc.journal.number
11
dc.journal.pagination
1931-1939
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Pividori, Milton Damián. University of Chicago; Estados Unidos
dc.description.fil
Fil: Cernadas, Andrés. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
dc.description.fil
Fil: de Haro, Luis Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
dc.description.fil
Fil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Bioinformatics (Oxford, England)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/35/11/1931/5144171
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/bty899
Archivos asociados