Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Clustermatch: discovering hidden relations in highly diverse kinds of qualitative and quantitative data without standardization

Pividori, Milton DamiánIcon ; Cernadas, Andrés; de Haro, Luis AlejandroIcon ; Carrari, Fernando OscarIcon ; Stegmayer, GeorginaIcon ; Milone, Diego HumbertoIcon
Fecha de publicación: 06/2019
Editorial: Oxford University Press
Revista: Bioinformatics (Oxford, England)
ISSN: 1367-4803
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Motivation: Heterogeneous and voluminous data sources are common in modern datasets, particularlyin systems biology studies. For instance, in multi-holistic approaches in the fruit biology field, data sourcescan include a mix of measurements such as morpho-agronomic traits, different kinds of molecules (nucleicacids and metabolites) and consumer preferences. These sources not only have different types of data(quantitative and qualitative), but also large amounts of variables with possibly non-linear relationshipsamong them. An integrative analysis is usually hard to conduct, since it requires several manualstandardization steps, with a direct and critical impact on the results obtained. These are important issuesin clustering applications, which highlight the need of new methods for uncovering complex relationshipsin such diverse repositories.Results: We designed a new method named Clustermatch to easily and efficiently perform data-miningtasks on large and highly heterogeneous datasets. Our approach can derive a similarity measure betweenany quantitative or qualitative variables by looking on how they influence on the clustering of the biologicalmaterials under study. Comparisons with other methods in both simulated and real datasets show thatClustermatch is better suited for finding meaningful relationships in complex datasets.Availability: Files can be downloaded from https://sourceforge.net/projects/sourcesinc/files/clustermatch/and https://bitbucket.org/sinc-lab/clustermatch/.In addition,a web-demo is available athttp://sinc.unl.edu.ar/web-demo/clustermatch/
Palabras clave: CLUSTERING , HETEROGENEOUS DATA SOURCES , DATA FUSION
Ver el registro completo
 
Archivos asociados
Tamaño: 620.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108897
URL: https://academic.oup.com/bioinformatics/article/35/11/1931/5144171
DOI: http://dx.doi.org/10.1093/bioinformatics/bty899
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Pividori, Milton Damián; Cernadas, Andrés; de Haro, Luis Alejandro; Carrari, Fernando Oscar; Stegmayer, Georgina; et al.; Clustermatch: discovering hidden relations in highly diverse kinds of qualitative and quantitative data without standardization; Oxford University Press; Bioinformatics (Oxford, England); 35; 11; 6-2019; 1931-1939
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES