Mostrar el registro sencillo del ítem
dc.contributor.author
Ferrante, Enzo
dc.contributor.author
Dokania, Puneet Kumar
dc.contributor.author
Silva, Rafael Marini
dc.contributor.author
Paragios, Nikos
dc.date.available
2020-07-06T12:55:10Z
dc.date.issued
2019-07
dc.identifier.citation
Ferrante, Enzo; Dokania, Puneet Kumar; Silva, Rafael Marini; Paragios, Nikos; Weakly Supervised Learning of Metric Aggregations for Deformable Image Registration; Institute of Electrical and Electronics Engineers Inc.; IEEE Journal of Biomedical and Health Informatics; 23; 4; 7-2019; 1374-1384
dc.identifier.issn
2168-2194
dc.identifier.uri
http://hdl.handle.net/11336/108845
dc.description.abstract
Deformable registration has been one of the pillars of biomedical image computing. Conventional approaches refer to the definition of a similarity criterion that, once endowed with a deformation model and a smoothness constraint, determines the optimal transformation to align two given images. The definition of this metric function is among the most critical aspects of the registration process. We argue that incorporating semantic information (in the form of anatomical segmentation maps) into the registration process will further improve the accuracy of the results. In this paper, we propose a novel weakly supervised approach to learn domain-specific aggregations of conventional metrics using anatomical segmentations. This combination is learned using latent structured support vector machines. The learned matching criterion is integrated within a metric-free optimization framework based on graphical models, resulting in a multi-metric algorithm endowed with a spatially varying similarity metric function conditioned on the anatomical structures. We provide extensive evaluation on three different datasets of CT and MRI images, showing that learned multi-metric registration outperforms single-metric approaches based on conventional similarity measures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEFORMABLE IMAGE REGISTRATION
dc.subject
DISCRETE GRAPHICAL MODELS
dc.subject
LATENT STRUCTURED SUPPORT VECTOR MACHINE (LSSVM)
dc.subject
WEAKLY SUPERVISED LEARNING
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Weakly Supervised Learning of Metric Aggregations for Deformable Image Registration
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-01T20:07:05Z
dc.journal.volume
23
dc.journal.number
4
dc.journal.pagination
1374-1384
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Dokania, Puneet Kumar. University of Oxford; Reino Unido
dc.description.fil
Fil: Silva, Rafael Marini. Centre de Vision Numérique; . Therapanacea;
dc.description.fil
Fil: Paragios, Nikos. Therapanacea; . Centre de Vision Numérique;
dc.journal.title
IEEE Journal of Biomedical and Health Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/JBHI.2018.2869700
Archivos asociados