Mostrar el registro sencillo del ítem

dc.contributor.author
Ferrante, Enzo  
dc.contributor.author
Dokania, Puneet Kumar  
dc.contributor.author
Silva, Rafael Marini  
dc.contributor.author
Paragios, Nikos  
dc.date.available
2020-07-06T12:55:10Z  
dc.date.issued
2019-07  
dc.identifier.citation
Ferrante, Enzo; Dokania, Puneet Kumar; Silva, Rafael Marini; Paragios, Nikos; Weakly Supervised Learning of Metric Aggregations for Deformable Image Registration; Institute of Electrical and Electronics Engineers Inc.; IEEE Journal of Biomedical and Health Informatics; 23; 4; 7-2019; 1374-1384  
dc.identifier.issn
2168-2194  
dc.identifier.uri
http://hdl.handle.net/11336/108845  
dc.description.abstract
Deformable registration has been one of the pillars of biomedical image computing. Conventional approaches refer to the definition of a similarity criterion that, once endowed with a deformation model and a smoothness constraint, determines the optimal transformation to align two given images. The definition of this metric function is among the most critical aspects of the registration process. We argue that incorporating semantic information (in the form of anatomical segmentation maps) into the registration process will further improve the accuracy of the results. In this paper, we propose a novel weakly supervised approach to learn domain-specific aggregations of conventional metrics using anatomical segmentations. This combination is learned using latent structured support vector machines. The learned matching criterion is integrated within a metric-free optimization framework based on graphical models, resulting in a multi-metric algorithm endowed with a spatially varying similarity metric function conditioned on the anatomical structures. We provide extensive evaluation on three different datasets of CT and MRI images, showing that learned multi-metric registration outperforms single-metric approaches based on conventional similarity measures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEFORMABLE IMAGE REGISTRATION  
dc.subject
DISCRETE GRAPHICAL MODELS  
dc.subject
LATENT STRUCTURED SUPPORT VECTOR MACHINE (LSSVM)  
dc.subject
WEAKLY SUPERVISED LEARNING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Weakly Supervised Learning of Metric Aggregations for Deformable Image Registration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-01T20:07:05Z  
dc.journal.volume
23  
dc.journal.number
4  
dc.journal.pagination
1374-1384  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Dokania, Puneet Kumar. University of Oxford; Reino Unido  
dc.description.fil
Fil: Silva, Rafael Marini. Centre de Vision Numérique; . Therapanacea;  
dc.description.fil
Fil: Paragios, Nikos. Therapanacea; . Centre de Vision Numérique;  
dc.journal.title
IEEE Journal of Biomedical and Health Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/JBHI.2018.2869700