Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Weakly Supervised Learning of Metric Aggregations for Deformable Image Registration

Ferrante, EnzoIcon ; Dokania, Puneet Kumar; Silva, Rafael Marini; Paragios, Nikos
Fecha de publicación: 07/2019
Editorial: Institute of Electrical and Electronics Engineers Inc.
Revista: IEEE Journal of Biomedical and Health Informatics
ISSN: 2168-2194
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Deformable registration has been one of the pillars of biomedical image computing. Conventional approaches refer to the definition of a similarity criterion that, once endowed with a deformation model and a smoothness constraint, determines the optimal transformation to align two given images. The definition of this metric function is among the most critical aspects of the registration process. We argue that incorporating semantic information (in the form of anatomical segmentation maps) into the registration process will further improve the accuracy of the results. In this paper, we propose a novel weakly supervised approach to learn domain-specific aggregations of conventional metrics using anatomical segmentations. This combination is learned using latent structured support vector machines. The learned matching criterion is integrated within a metric-free optimization framework based on graphical models, resulting in a multi-metric algorithm endowed with a spatially varying similarity metric function conditioned on the anatomical structures. We provide extensive evaluation on three different datasets of CT and MRI images, showing that learned multi-metric registration outperforms single-metric approaches based on conventional similarity measures.
Palabras clave: DEFORMABLE IMAGE REGISTRATION , DISCRETE GRAPHICAL MODELS , LATENT STRUCTURED SUPPORT VECTOR MACHINE (LSSVM) , WEAKLY SUPERVISED LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.388Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108845
DOI: http://dx.doi.org/10.1109/JBHI.2018.2869700
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Ferrante, Enzo; Dokania, Puneet Kumar; Silva, Rafael Marini; Paragios, Nikos; Weakly Supervised Learning of Metric Aggregations for Deformable Image Registration; Institute of Electrical and Electronics Engineers Inc.; IEEE Journal of Biomedical and Health Informatics; 23; 4; 7-2019; 1374-1384
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES