Mostrar el registro sencillo del ítem
dc.contributor.author
Ibarrola, Francisco Javier
dc.contributor.author
Spies, Ruben Daniel
dc.contributor.author
Di Persia, Leandro Ezequiel
dc.date.available
2020-07-05T15:46:36Z
dc.date.issued
2019-05
dc.identifier.citation
Ibarrola, Francisco Javier; Spies, Ruben Daniel; Di Persia, Leandro Ezequiel; Switching Divergences for Spectral Learning in Blind Speech Dereverberation; Institute of Electrical and Electronics Engineers Inc.; IEEE/ACM Transactions on Audio, Speech, and Language Processing; 27; 5; 5-2019; 881-891
dc.identifier.issn
2329-9290
dc.identifier.uri
http://hdl.handle.net/11336/108837
dc.description.abstract
When recorded in an enclosed room, a sound signal will most certainly get affected by reverberation. This not only undermines audio quality, but also poses a problem for many human-machine interaction technologies that use speech as their input. In this paper, a new blind, two-stage dereverberation approach based in a generalized beta-divergence as a fidelity term over a non-negative representation is proposed. The first stage consists of learning the spectral structure of the signal solely from the observed spectrogram, while the second stage is devoted to model reverberation. Both steps are taken by minimizing a cost function in which the aim is put either in constructing a dictionary or a good representation by changing the divergence involved. In addition, an approach for finding an optimal fidelity parameter for dictionary learning is proposed. An algorithm for implementing the proposed method is described and tested against state-of-the-art methods. Results show improvements for both artificial reverberation and real recordings.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SIGNAL PROCESSING
dc.subject
DEREVERBERATION
dc.subject
PENALIZATION
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Switching Divergences for Spectral Learning in Blind Speech Dereverberation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-01T20:07:42Z
dc.journal.volume
27
dc.journal.number
5
dc.journal.pagination
881-891
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Ibarrola, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
IEEE/ACM Transactions on Audio, Speech, and Language Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8651554/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TASLP.2019.2901643
Archivos asociados