Mostrar el registro sencillo del ítem

dc.contributor.author
Ibarrola, Francisco Javier  
dc.contributor.author
Spies, Ruben Daniel  
dc.contributor.author
Di Persia, Leandro Ezequiel  
dc.date.available
2020-07-05T15:46:36Z  
dc.date.issued
2019-05  
dc.identifier.citation
Ibarrola, Francisco Javier; Spies, Ruben Daniel; Di Persia, Leandro Ezequiel; Switching Divergences for Spectral Learning in Blind Speech Dereverberation; Institute of Electrical and Electronics Engineers Inc.; IEEE/ACM Transactions on Audio, Speech, and Language Processing; 27; 5; 5-2019; 881-891  
dc.identifier.issn
2329-9290  
dc.identifier.uri
http://hdl.handle.net/11336/108837  
dc.description.abstract
When recorded in an enclosed room, a sound signal will most certainly get affected by reverberation. This not only undermines audio quality, but also poses a problem for many human-machine interaction technologies that use speech as their input. In this paper, a new blind, two-stage dereverberation approach based in a generalized beta-divergence as a fidelity term over a non-negative representation is proposed. The first stage consists of learning the spectral structure of the signal solely from the observed spectrogram, while the second stage is devoted to model reverberation. Both steps are taken by minimizing a cost function in which the aim is put either in constructing a dictionary or a good representation by changing the divergence involved. In addition, an approach for finding an optimal fidelity parameter for dictionary learning is proposed. An algorithm for implementing the proposed method is described and tested against state-of-the-art methods. Results show improvements for both artificial reverberation and real recordings.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SIGNAL PROCESSING  
dc.subject
DEREVERBERATION  
dc.subject
PENALIZATION  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Switching Divergences for Spectral Learning in Blind Speech Dereverberation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-01T20:07:42Z  
dc.journal.volume
27  
dc.journal.number
5  
dc.journal.pagination
881-891  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Ibarrola, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
IEEE/ACM Transactions on Audio, Speech, and Language Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8651554/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TASLP.2019.2901643