Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Switching Divergences for Spectral Learning in Blind Speech Dereverberation

Ibarrola, Francisco JavierIcon ; Spies, Ruben DanielIcon ; Di Persia, Leandro EzequielIcon
Fecha de publicación: 05/2019
Editorial: Institute of Electrical and Electronics Engineers Inc.
Revista: IEEE/ACM Transactions on Audio, Speech, and Language Processing
ISSN: 2329-9290
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

When recorded in an enclosed room, a sound signal will most certainly get affected by reverberation. This not only undermines audio quality, but also poses a problem for many human-machine interaction technologies that use speech as their input. In this paper, a new blind, two-stage dereverberation approach based in a generalized beta-divergence as a fidelity term over a non-negative representation is proposed. The first stage consists of learning the spectral structure of the signal solely from the observed spectrogram, while the second stage is devoted to model reverberation. Both steps are taken by minimizing a cost function in which the aim is put either in constructing a dictionary or a good representation by changing the divergence involved. In addition, an approach for finding an optimal fidelity parameter for dictionary learning is proposed. An algorithm for implementing the proposed method is described and tested against state-of-the-art methods. Results show improvements for both artificial reverberation and real recordings.
Palabras clave: SIGNAL PROCESSING , DEREVERBERATION , PENALIZATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.975Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108837
URL: https://ieeexplore.ieee.org/document/8651554/
DOI: http://dx.doi.org/10.1109/TASLP.2019.2901643
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Ibarrola, Francisco Javier; Spies, Ruben Daniel; Di Persia, Leandro Ezequiel; Switching Divergences for Spectral Learning in Blind Speech Dereverberation; Institute of Electrical and Electronics Engineers Inc.; IEEE/ACM Transactions on Audio, Speech, and Language Processing; 27; 5; 5-2019; 881-891
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES