Mostrar el registro sencillo del ítem

dc.contributor.author
Maestripieri, Alejandra Laura  
dc.contributor.author
Martinez Peria, Francisco Dardo  
dc.date.available
2020-06-30T20:32:50Z  
dc.date.issued
2006-12  
dc.identifier.citation
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-638  
dc.identifier.issn
0001-6969  
dc.identifier.uri
http://hdl.handle.net/11336/108544  
dc.description.abstract
Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint  projections are given.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
János Bolyai Mathematical Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INDEFINITE METRIC  
dc.subject
KREIN SPACE  
dc.subject
OBLIQUE PROJECTIONS  
dc.subject
SELFADJOINT  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Decomposition of selfadjoint projections in Krein spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-28T16:14:15Z  
dc.journal.volume
72  
dc.journal.number
3-4  
dc.journal.pagination
611-638  
dc.journal.pais
Hungría  
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina  
dc.journal.title
Acta Scientiarum Mathematicarum (Szeged)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerArticle.action?id=4393&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=27d6075abbf01f54&style=