Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Decomposition of selfadjoint projections in Krein spaces

Maestripieri, Alejandra LauraIcon ; Martinez Peria, Francisco DardoIcon
Fecha de publicación: 12/2006
Editorial: János Bolyai Mathematical Institute
Revista: Acta Scientiarum Mathematicarum (Szeged)
ISSN: 0001-6969
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Matemáticas

Resumen

Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint  projections are given.
Palabras clave: INDEFINITE METRIC , KREIN SPACE , OBLIQUE PROJECTIONS , SELFADJOINT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 269.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108544
URL: http://pub.acta.hu/acta/showCustomerArticle.action?id=4393&dataObjectType=articl
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-638
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES