Mostrar el registro sencillo del ítem

dc.contributor.author
Kröhling, Dan Ezequiel  
dc.contributor.author
Chiotti, Omar Juan Alfredo  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2020-06-30T20:00:15Z  
dc.date.issued
2019-05-03  
dc.identifier.citation
Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; The importance of context-dependent learning in negotiation agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 3-5-2019; 135-149  
dc.identifier.issn
1137-3601  
dc.identifier.uri
http://hdl.handle.net/11336/108532  
dc.description.abstract
Automated negotiation between artificial agents is essential to deploy Cognitive Computing and Internet of Things. In this sense, the behavior of those negotiation agents depend significantly on the influence of environmental variables, facts, and events, which made up the context of the negotiation game. This context affects not only a given agent preferences and strategies, but also those of his opponents. In spite of this, the existing literature on automated negotiation is scarce about how to properly account for the effect of the context in learning and evolving strategies. In this paper, a novel context-driven representation of the negotiation game is introduced. Also, a simple negotiation agent that queries available information from context variables, internally models them, and learns how to take advantage of this knowledge by playing against himself using reinforcement learning is proposed. Through a set of episodes of our context-aware agent against other negotiation agents inthe existing literature, it is shown that it makes no sense to negotiate without taking relevant context variables into account. Our context-aware negotiation agent has been implemented in the GENIUS tool. Results obtained are significant and quite revealing about the role of self-play in learning to negotiate  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sociedad Iberoamericana de Inteligencia Artificial  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
agent  
dc.subject
automated negotition  
dc.subject
Reinforcement Learning  
dc.subject
Internet of Things,  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
The importance of context-dependent learning in negotiation agents  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-24T17:55:53Z  
dc.identifier.eissn
1988-3064  
dc.journal.volume
22  
dc.journal.number
63  
dc.journal.pagination
135-149  
dc.journal.pais
España  
dc.description.fil
Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Inteligencia Artificial  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/252  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.4114/intartif.vol22iss63pp135-149