Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The importance of context-dependent learning in negotiation agents

Kröhling, Dan EzequielIcon ; Chiotti, Omar Juan AlfredoIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 03/05/2019
Editorial: Sociedad Iberoamericana de Inteligencia Artificial
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Automated negotiation between artificial agents is essential to deploy Cognitive Computing and Internet of Things. In this sense, the behavior of those negotiation agents depend significantly on the influence of environmental variables, facts, and events, which made up the context of the negotiation game. This context affects not only a given agent preferences and strategies, but also those of his opponents. In spite of this, the existing literature on automated negotiation is scarce about how to properly account for the effect of the context in learning and evolving strategies. In this paper, a novel context-driven representation of the negotiation game is introduced. Also, a simple negotiation agent that queries available information from context variables, internally models them, and learns how to take advantage of this knowledge by playing against himself using reinforcement learning is proposed. Through a set of episodes of our context-aware agent against other negotiation agents inthe existing literature, it is shown that it makes no sense to negotiate without taking relevant context variables into account. Our context-aware negotiation agent has been implemented in the GENIUS tool. Results obtained are significant and quite revealing about the role of self-play in learning to negotiate
Palabras clave: agent , automated negotition , Reinforcement Learning , Internet of Things,
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.516Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108532
URL: https://journal.iberamia.org/index.php/intartif/article/view/252
DOI: https://doi.org/10.4114/intartif.vol22iss63pp135-149
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; The importance of context-dependent learning in negotiation agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 3-5-2019; 135-149
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES