Mostrar el registro sencillo del ítem

dc.contributor.author
Quispe, Mayte Milenka  
dc.contributor.author
Lopez, Olivia Valeria  
dc.contributor.author
Villar, Marcelo Armando  
dc.date.available
2020-06-25T17:53:55Z  
dc.date.issued
2019-04  
dc.identifier.citation
Quispe, Mayte Milenka; Lopez, Olivia Valeria; Villar, Marcelo Armando; Oxidative Degradation of Thermoplastic Starch Induced by UV Radiation; Tech Science Press; Journal of Renewable Materials; 7; 4; 4-2019; 383-391  
dc.identifier.issn
2164-6325  
dc.identifier.uri
http://hdl.handle.net/11336/108246  
dc.description.abstract
Among biopolymers, thermoplastic starch (TPS) is a good candidate to obtain biomaterials because of its natural origin, biodegradable character, and processability. Exposure to ultraviolet (UV) radiation causes significant degradation of starch-based materials, inducing photooxidative reactions which result in breaking of polymer chains, production of free radical, and reduction of molar mass. These changes produce a deterioration of TPS mechanical properties, leading to useless materials after an unpredictable time. In this work, changes induced on TPS by UV radiation, analyzing structural properties and mechanical behavior, are studied. TPS was obtained through thermo-mechanical processing of native corn starch in the presence of water (45 % w/w) and glycerol (30 % w/w) as plasticizers. Films were obtained by thermocompression and, before testing, specimens were conditioned to reduce material fragility. Photodegradation process was performed by exposing TPS to 264 h UV radiation in a weathering test chamber. Specimens weight loss was determined gravimetrically. Chemical changes were studied by Fourier Transform Infrared Spectroscopy (FTIR) and morphological modifications were analyzed by Scanning Electron Microscopy (SEM). Reduction of weight average molar mass was measured by Static Light Scattering (SLS). Changes in mechanical properties were studied from tensile tests. After 96 h exposure, TPS specimens presented a weight reduction of 4-6%, mainly attributed to plasticizers lost by evaporation. SEM observations showed that UV radiation induced morphological changes on TPS, evidenced by an increment of specimens cracking. By FTIR, it was detected the presence of an additional band located at 1726 cm-1 in samples submitted to UV radiation, attributed to the formation of -C=O groups. Weight average molar mass of native starch was in the order of 107 g mol-1. TPS exposure to UV radiation decreased significantly its molar mass, confirming molecular degradation of the biopolymer. When TPS was exposed during 48 h, it was detected a considerable decrease in elongation at break values (~ 85%), indicating that TPS flexibility was reduced. On the other hand, after 48 h exposure, TPS elastic modulus was 55 times higher than those of the unexposed specimens, evidencing an increase in material rigidity. TPS maximum tensile strength was also increased by UV light, with an increment of ~ 400% after 48 h exposure. Results revealed that starch-based materials can be degraded by exposure to UV radiation, modifying their microstructure and mechanical performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Tech Science Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
THERMOPLASTIC STARCH  
dc.subject
UV RADIATION  
dc.subject
STRUCTURAL PROPERTIES  
dc.subject
MECHANICAL PROPERTIES  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Oxidative Degradation of Thermoplastic Starch Induced by UV Radiation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-26T20:21:36Z  
dc.journal.volume
7  
dc.journal.number
4  
dc.journal.pagination
383-391  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nevada  
dc.description.fil
Fil: Quispe, Mayte Milenka. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Lopez, Olivia Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Villar, Marcelo Armando. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Journal of Renewable Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.techscience.com/JRM/2019/doi.php?id=5730  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.32604/jrm.2019.04276