Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Oxidative Degradation of Thermoplastic Starch Induced by UV Radiation

Quispe, Mayte Milenka; Lopez, Olivia ValeriaIcon ; Villar, Marcelo ArmandoIcon
Fecha de publicación: 04/2019
Editorial: Tech Science Press
Revista: Journal of Renewable Materials
ISSN: 2164-6325
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

Among biopolymers, thermoplastic starch (TPS) is a good candidate to obtain biomaterials because of its natural origin, biodegradable character, and processability. Exposure to ultraviolet (UV) radiation causes significant degradation of starch-based materials, inducing photooxidative reactions which result in breaking of polymer chains, production of free radical, and reduction of molar mass. These changes produce a deterioration of TPS mechanical properties, leading to useless materials after an unpredictable time. In this work, changes induced on TPS by UV radiation, analyzing structural properties and mechanical behavior, are studied. TPS was obtained through thermo-mechanical processing of native corn starch in the presence of water (45 % w/w) and glycerol (30 % w/w) as plasticizers. Films were obtained by thermocompression and, before testing, specimens were conditioned to reduce material fragility. Photodegradation process was performed by exposing TPS to 264 h UV radiation in a weathering test chamber. Specimens weight loss was determined gravimetrically. Chemical changes were studied by Fourier Transform Infrared Spectroscopy (FTIR) and morphological modifications were analyzed by Scanning Electron Microscopy (SEM). Reduction of weight average molar mass was measured by Static Light Scattering (SLS). Changes in mechanical properties were studied from tensile tests. After 96 h exposure, TPS specimens presented a weight reduction of 4-6%, mainly attributed to plasticizers lost by evaporation. SEM observations showed that UV radiation induced morphological changes on TPS, evidenced by an increment of specimens cracking. By FTIR, it was detected the presence of an additional band located at 1726 cm-1 in samples submitted to UV radiation, attributed to the formation of -C=O groups. Weight average molar mass of native starch was in the order of 107 g mol-1. TPS exposure to UV radiation decreased significantly its molar mass, confirming molecular degradation of the biopolymer. When TPS was exposed during 48 h, it was detected a considerable decrease in elongation at break values (~ 85%), indicating that TPS flexibility was reduced. On the other hand, after 48 h exposure, TPS elastic modulus was 55 times higher than those of the unexposed specimens, evidencing an increase in material rigidity. TPS maximum tensile strength was also increased by UV light, with an increment of ~ 400% after 48 h exposure. Results revealed that starch-based materials can be degraded by exposure to UV radiation, modifying their microstructure and mechanical performance.
Palabras clave: THERMOPLASTIC STARCH , UV RADIATION , STRUCTURAL PROPERTIES , MECHANICAL PROPERTIES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 381.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108246
URL: http://www.techscience.com/JRM/2019/doi.php?id=5730
DOI: http://dx.doi.org/10.32604/jrm.2019.04276
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Quispe, Mayte Milenka; Lopez, Olivia Valeria; Villar, Marcelo Armando; Oxidative Degradation of Thermoplastic Starch Induced by UV Radiation; Tech Science Press; Journal of Renewable Materials; 7; 4; 4-2019; 383-391
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES