Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Corach, Gustavo  
dc.date.available
2020-06-17T19:52:52Z  
dc.date.issued
2019-03  
dc.identifier.citation
Andruchow, Esteban; Corach, Gustavo; Uncertainty principle and geometry of the infinite Grassmann manifold; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 248; 1; 3-2019; 31-44  
dc.identifier.issn
0039-3223  
dc.identifier.uri
http://hdl.handle.net/11336/107573  
dc.description.abstract
We study the pairs of projections PIf=χIf,QJf=(χJf) ˇ, f∈L^2(R^n), where I,J⊂R^n are sets of finite positive Lebesgue measure, χI,χJ denote the corresponding characteristic functions and ˇ, ˇ denote the Fourier-Plancherel transformation L^2(R^n)→L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the δ(t)=e^{itXI,J}P^{Ie−itXI,J} which joins PI and QJ and has length π/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ∥[H,PI]∥≥π/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue γ(X_I,J) which satisfies cos(γ(X_I,J))=∥PIQJ∥.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Polish Academy of Sciences. Institute of Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PROJECTIONS  
dc.subject
PAIR OF PROJECTIONS  
dc.subject
GRASSMANN MANIFOLD  
dc.subject
UNCERTAINTY PRINCIPLE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Uncertainty principle and geometry of the infinite Grassmann manifold  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-05-27T16:38:50Z  
dc.identifier.eissn
1730-6337  
dc.journal.volume
248  
dc.journal.number
1  
dc.journal.pagination
31-44  
dc.journal.pais
Polonia  
dc.journal.ciudad
Varsovia  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.journal.title
Studia Mathematica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.impan.pl/get/doi/10.4064/sm170915-27-12  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/sm170915-27-12  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1701.03733