Artículo
Uncertainty principle and geometry of the infinite Grassmann manifold
Fecha de publicación:
03/2019
Editorial:
Polish Academy of Sciences. Institute of Mathematics
Revista:
Studia Mathematica
ISSN:
0039-3223
e-ISSN:
1730-6337
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the pairs of projections PIf=χIf,QJf=(χJf) ˇ, f∈L^2(R^n), where I,J⊂R^n are sets of finite positive Lebesgue measure, χI,χJ denote the corresponding characteristic functions and ˇ, ˇ denote the Fourier-Plancherel transformation L^2(R^n)→L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the δ(t)=e^{itXI,J}P^{Ie−itXI,J} which joins PI and QJ and has length π/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ∥[H,PI]∥≥π/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue γ(X_I,J) which satisfies cos(γ(X_I,J))=∥PIQJ∥.
Palabras clave:
PROJECTIONS
,
PAIR OF PROJECTIONS
,
GRASSMANN MANIFOLD
,
UNCERTAINTY PRINCIPLE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Uncertainty principle and geometry of the infinite Grassmann manifold; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 248; 1; 3-2019; 31-44
Compartir
Altmétricas