Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Uncertainty principle and geometry of the infinite Grassmann manifold

Andruchow, EstebanIcon ; Corach, GustavoIcon
Fecha de publicación: 03/2019
Editorial: Polish Academy of Sciences. Institute of Mathematics
Revista: Studia Mathematica
ISSN: 0039-3223
e-ISSN: 1730-6337
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We study the pairs of projections PIf=χIf,QJf=(χJf) ˇ, f∈L^2(R^n), where I,J⊂R^n are sets of finite positive Lebesgue measure, χI,χJ denote the corresponding characteristic functions and ˇ, ˇ denote the Fourier-Plancherel transformation L^2(R^n)→L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the δ(t)=e^{itXI,J}P^{Ie−itXI,J} which joins PI and QJ and has length π/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ∥[H,PI]∥≥π/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue γ(X_I,J) which satisfies cos(γ(X_I,J))=∥PIQJ∥.
Palabras clave: PROJECTIONS , PAIR OF PROJECTIONS , GRASSMANN MANIFOLD , UNCERTAINTY PRINCIPLE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 134.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/107573
URL: http://www.impan.pl/get/doi/10.4064/sm170915-27-12
DOI: http://dx.doi.org/10.4064/sm170915-27-12
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Uncertainty principle and geometry of the infinite Grassmann manifold; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 248; 1; 3-2019; 31-44
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES