Mostrar el registro sencillo del ítem

dc.contributor.author
Dematties, Dario Jesus  
dc.contributor.author
Rizzi, Silvio  
dc.contributor.author
Thiruvathukal, George K.  
dc.contributor.author
Pérez Cesaretti, Mauricio David  
dc.contributor.author
Wainselboim, Alejandro Javier  
dc.contributor.author
Zanutto, Bonifacio Silvano  
dc.date.available
2020-06-17T18:03:09Z  
dc.date.issued
2020-04  
dc.identifier.citation
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George K.; Pérez Cesaretti, Mauricio David; Wainselboim, Alejandro Javier; et al.; A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics; Frontiers Research Foundation; Frontiers in Neural Circuits; 14; 4-2020; 1-69  
dc.identifier.issn
1662-5110  
dc.identifier.uri
http://hdl.handle.net/11336/107553  
dc.description.abstract
A general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches–on the other hand–contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited—bootstrapping from the features returned by Word Embedding mechanisms—to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Research Foundation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
UNSUPERVISED LEARNING  
dc.subject
CORTICAL DYNAMICS  
dc.subject
BRAIN-INSPIRED ARTIFICIAL NEURAL NETWORKS  
dc.subject
GRAMMAR EMERGENCE  
dc.title
A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-06-08T15:37:16Z  
dc.journal.volume
14  
dc.journal.pagination
1-69  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Dematties, Dario Jesus. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina  
dc.description.fil
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos  
dc.description.fil
Fil: Thiruvathukal, George K.. University of Chicago; Estados Unidos. Argonne National Laboratory; Estados Unidos  
dc.description.fil
Fil: Pérez Cesaretti, Mauricio David. Uppsala Universitet.; Suecia  
dc.description.fil
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina  
dc.description.fil
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina  
dc.journal.title
Frontiers in Neural Circuits  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fncir.2020.00012  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fncir.2020.00012/full