Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics

Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George K.; Pérez Cesaretti, Mauricio David; Wainselboim, Alejandro JavierIcon ; Zanutto, Bonifacio SilvanoIcon
Fecha de publicación: 04/2020
Editorial: Frontiers Research Foundation
Revista: Frontiers in Neural Circuits
ISSN: 1662-5110
Idioma: Inglés
Tipo de recurso: Artículo publicado

Resumen

A general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches–on the other hand–contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited—bootstrapping from the features returned by Word Embedding mechanisms—to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications.
Palabras clave: UNSUPERVISED LEARNING , CORTICAL DYNAMICS , BRAIN-INSPIRED ARTIFICIAL NEURAL NETWORKS , GRAMMAR EMERGENCE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.457Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/107553
DOI: http://dx.doi.org/10.3389/fncir.2020.00012
URL: https://www.frontiersin.org/article/10.3389/fncir.2020.00012/full
Colecciones
Articulos(IBYME)
Articulos de INST.DE BIOLOGIA Y MEDICINA EXPERIMENTAL (I)
Citación
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George K.; Pérez Cesaretti, Mauricio David; Wainselboim, Alejandro Javier; et al.; A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics; Frontiers Research Foundation; Frontiers in Neural Circuits; 14; 4-2020; 1-69
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES