Mostrar el registro sencillo del ítem
dc.contributor.author
Benac, Maria Jose
dc.contributor.author
Massey, Pedro Gustavo
dc.contributor.author
Ruiz, Mariano Andres
dc.contributor.author
Stojanoff, Demetrio
dc.date.available
2020-06-08T20:50:25Z
dc.date.issued
2020-04
dc.identifier.citation
Benac, Maria Jose; Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame designs for multitasking devices with weight restrictions; Springer; Advances In Computational Mathematics; 46; 2; 4-2020; 1-19
dc.identifier.issn
1019-7168
dc.identifier.uri
http://hdl.handle.net/11336/106957
dc.description.abstract
Let d=(d_j)_j∈I_m ∈ N^m be a finite sequence (of dimensions) and α=(α_i)_i∈ I_n be a sequence of positive numbers (of weights), where I_k={1,...,k} for k ∈ N. We introduce the (α , d)-designs i.e., m-tuples Φ=( F_j)_j ∈ I_m such that F_j={ f_ij}_i∈ I_n is a finite sequence in C^{d_j}, j ∈ I_m, and such that the sequence of non-negative numbers (||f_ij||^2)_j ∈ I_m forms a partition of α_i, i ∈ I_n. We characterize the existence of (α , d)-designs with prescribed properties in terms of majorization relations. We show, by means of a finite-step algorithm, that there exist (α , d)-designs Φ^ op =(F_j^op)_j∈I_m that are universally optimal; that is, for every convex function φ:[0,∞)→ [0,∞) then Φ^ op minimizes the joint convex potential induced by φ among (α , d)-designs, namely Σ_{j ∈ I_m} P_φ( F_j^op) ≤ Σ_{j ∈ I_m} P_φ( F_j) for every (α , d)$-design Φ=( F_j)_{j∈ I_m}, where P_φ(F)=tr(φ(S_F)); in particular, Φ^ op minimizes both the joint frame potential and the joint mean square error among (α , d)-designs. We show that in this case F_j^op is a frame for C^{d_j}, for j ∈ I_m. This corresponds to the existence of optimal encoding-decoding schemes for multitasking devices with energy restrictions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FRAMES
dc.subject
FRAME DESIGNS
dc.subject
CONVEX POTENTIALS
dc.subject
MAJORIZATION
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Optimal frame designs for multitasking devices with weight restrictions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-05-27T16:32:24Z
dc.identifier.eissn
1572-9044
dc.journal.volume
46
dc.journal.number
2
dc.journal.pagination
1-19
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Benac, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías. Departamento de Matemática; Argentina
dc.description.fil
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Advances In Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10444-020-09762-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10444-020-09762-6
Archivos asociados