Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimal frame designs for multitasking devices with weight restrictions

Benac, Maria JoseIcon ; Massey, Pedro GustavoIcon ; Ruiz, Mariano AndresIcon ; Stojanoff, DemetrioIcon
Fecha de publicación: 04/2020
Editorial: Springer
Revista: Advances In Computational Mathematics
ISSN: 1019-7168
e-ISSN: 1572-9044
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let d=(d_j)_j∈I_m ∈ N^m be a finite sequence (of dimensions) and α=(α_i)_i∈ I_n be a sequence of positive numbers (of weights), where I_k={1,...,k} for k ∈ N. We introduce the (α , d)-designs i.e., m-tuples Φ=( F_j)_j ∈ I_m such that F_j={ f_ij}_i∈ I_n is a finite sequence in C^{d_j}, j ∈ I_m, and such that the sequence of non-negative numbers (||f_ij||^2)_j ∈ I_m forms a partition of α_i, i ∈ I_n. We characterize the existence of (α , d)-designs with prescribed properties in terms of majorization relations. We show, by means of a finite-step algorithm, that there exist (α , d)-designs Φ^ op =(F_j^op)_j∈I_m that are universally optimal; that is, for every convex function φ:[0,∞)→ [0,∞) then Φ^ op minimizes the joint convex potential induced by φ among (α , d)-designs, namely Σ_{j ∈ I_m} P_φ( F_j^op) ≤ Σ_{j ∈ I_m} P_φ( F_j) for every (α , d)$-design Φ=( F_j)_{j∈ I_m}, where P_φ(F)=tr(φ(S_F)); in particular, Φ^ op minimizes both the joint frame potential and the joint mean square error among (α , d)-designs. We show that in this case F_j^op is a frame for C^{d_j}, for j ∈ I_m. This corresponds to the existence of optimal encoding-decoding schemes for multitasking devices with energy restrictions.
Palabras clave: FRAMES , FRAME DESIGNS , CONVEX POTENTIALS , MAJORIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 449.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/106957
URL: http://link.springer.com/10.1007/s10444-020-09762-6
DOI: http://dx.doi.org/10.1007/s10444-020-09762-6
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Benac, Maria Jose; Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame designs for multitasking devices with weight restrictions; Springer; Advances In Computational Mathematics; 46; 2; 4-2020; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES