Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Varela, Alejandro  
dc.date.available
2020-06-05T21:09:08Z  
dc.date.issued
2005-06  
dc.identifier.citation
Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-163  
dc.identifier.issn
0378-620X  
dc.identifier.uri
http://hdl.handle.net/11336/106796  
dc.description.abstract
Let B be a C^*-algebra and X a Hilbert C^*B-module. If  p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p  in B and x ∈ S_p(X), consider the  modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
STATE SPACE  
dc.subject
C*-MODULE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
C*- Modular Vector States  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-28T16:14:37Z  
dc.identifier.eissn
1420-8989  
dc.journal.volume
52  
dc.journal.number
2  
dc.journal.pagination
149-163  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Integral Equations and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-002-1280-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-002-1280-y