Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Varela, Alejandro
dc.date.available
2020-06-05T21:09:08Z
dc.date.issued
2005-06
dc.identifier.citation
Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-163
dc.identifier.issn
0378-620X
dc.identifier.uri
http://hdl.handle.net/11336/106796
dc.description.abstract
Let B be a C^*-algebra and X a Hilbert C^*B-module. If p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p in B and x ∈ S_p(X), consider the modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
STATE SPACE
dc.subject
C*-MODULE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
C*- Modular Vector States
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-28T16:14:37Z
dc.identifier.eissn
1420-8989
dc.journal.volume
52
dc.journal.number
2
dc.journal.pagination
149-163
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Integral Equations and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-002-1280-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-002-1280-y
Archivos asociados