Artículo
C*- Modular Vector States
Fecha de publicación:
06/2005
Editorial:
Birkhauser Verlag Ag
Revista:
Integral Equations and Operator Theory
ISSN:
0378-620X
e-ISSN:
1420-8989
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let B be a C^*-algebra and X a Hilbert C^*B-module. If p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p in B and x ∈ S_p(X), consider the modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.
Palabras clave:
STATE SPACE
,
C*-MODULE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-163
Compartir
Altmétricas