Artículo
Generalized frame operator distance problems
Fecha de publicación:
11/2019
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let S∈Md(C)+ be a positive semidefinite d×d complex matrix and let a=(ai)i∈Ik ∈R>0 k, indexed by Ik={1,...,k}, be a k-tuple of positive numbers. Let Td(a) denote the set of families G={gi}i∈Ik ∈(Cd)k such that ‖gi‖2=ai, for i∈Ik; thus, Td(a) is the product of spheres in Cd endowed with the product metric. For a strictly convex unitarily invariant norm N in Md(C), we consider the generalized frame operator distance function Θ(N,S,a) defined on Td(a), given by Θ(N,S,a)(G)=N(S−SG) where SG=∑_{i∈Ik} gigi^⁎ ∈ Md(C)+. In this paper we determine the geometrical and spectral structure of local minimizers G0∈Td(a) of Θ(N,S,a). In particular, we show that local minimizers are global minimizers, and that these families do not depend on the particular choice of N.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Generalized frame operator distance problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 479; 2; 11-2019; 1738-1763
Compartir
Altmétricas