Mostrar el registro sencillo del ítem

dc.contributor.author
Nicolet, Jonathan José Carlos  
dc.contributor.author
Restrepo Rinckoar, Juan Felipe  
dc.contributor.author
Schlotthauer, Gaston  
dc.date.available
2020-06-03T14:19:35Z  
dc.date.issued
2020-03  
dc.identifier.citation
Nicolet, Jonathan José Carlos; Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Classification of intracavitary electrograms in atrial fibrillation using information and complexity measures; Elsevier; Biomedical Signal Processing and Control; 57; 3-2020; 101753-1/9  
dc.identifier.issn
1746-8094  
dc.identifier.uri
http://hdl.handle.net/11336/106585  
dc.description.abstract
Background Classification of complex fractionated atrial electrograms is crucial for the study of atrial fibrillation and the development of treatment strategies, because these electrophysiological phenomena represent a common substrate for radiofrequency ablation in treatment of this arrythmia.ObjectiveThe objective of this work is the characterization of short term atrial electrograms using nonlinear dynamics measures, helping in the automatic classification of electrograms.MethodsThe dataset consists of 113 atrial electrograms recordings from left-atrial endocardial mapping. These signals were classified by three expert electrophysiologists into four classes, from C0 (non fractionated) to C3 (high degree of fractionation). The calculated features were Approximate entropy, Dispersion entropy, Fuzzy entropy, Permutation entropy, Tsallis entropy, Shannon entropy, Renyi entropy, and Lempel-Ziv complexity. Features were selected for classification using Neighborhood Component Analysis. Different classifiers were tested using selected features, and the one with maximum sensitivity and specificity in each task was reported.ResultsWe obtained a classification performance that overcome previous works on this database and are comparable to the results of studies performed over bigger datasets. Separation between C3 signals from (C0, C1, C2) signals was performed with 99.98% sensitivity and 96.61% specificity. Non-fractionated signals (C0 + C1) were separated from fractionated signals (C2 + C3) with 96.72% sensitivity and 94.51% specificity. Moreover, the estimation times of the selected features are low enough to consider the online application of this scheme.Conclusions and significanceClassification performance obtained using information and complexity measures shown better results than previous works over this dataset, encouraging the application of these features to characterize atrial electrograms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPLEX FRACTIONATED ATRIAL ELECTROGRAMS  
dc.subject
INFORMATION THEORY  
dc.subject
COMPLEXITY MEASURES  
dc.subject
ATRIAL FIBRILLATION  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Classification of intracavitary electrograms in atrial fibrillation using information and complexity measures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-06-01T13:34:50Z  
dc.journal.volume
57  
dc.journal.pagination
101753-1/9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Nicolet, Jonathan José Carlos. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.description.fil
Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.journal.title
Biomedical Signal Processing and Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1746809419303349  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bspc.2019.101753