Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Classification of intracavitary electrograms in atrial fibrillation using information and complexity measures

Nicolet, Jonathan José CarlosIcon ; Restrepo Rinckoar, Juan FelipeIcon ; Schlotthauer, GastonIcon
Fecha de publicación: 03/2020
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Médica

Resumen

Background Classification of complex fractionated atrial electrograms is crucial for the study of atrial fibrillation and the development of treatment strategies, because these electrophysiological phenomena represent a common substrate for radiofrequency ablation in treatment of this arrythmia.ObjectiveThe objective of this work is the characterization of short term atrial electrograms using nonlinear dynamics measures, helping in the automatic classification of electrograms.MethodsThe dataset consists of 113 atrial electrograms recordings from left-atrial endocardial mapping. These signals were classified by three expert electrophysiologists into four classes, from C0 (non fractionated) to C3 (high degree of fractionation). The calculated features were Approximate entropy, Dispersion entropy, Fuzzy entropy, Permutation entropy, Tsallis entropy, Shannon entropy, Renyi entropy, and Lempel-Ziv complexity. Features were selected for classification using Neighborhood Component Analysis. Different classifiers were tested using selected features, and the one with maximum sensitivity and specificity in each task was reported.ResultsWe obtained a classification performance that overcome previous works on this database and are comparable to the results of studies performed over bigger datasets. Separation between C3 signals from (C0, C1, C2) signals was performed with 99.98% sensitivity and 96.61% specificity. Non-fractionated signals (C0 + C1) were separated from fractionated signals (C2 + C3) with 96.72% sensitivity and 94.51% specificity. Moreover, the estimation times of the selected features are low enough to consider the online application of this scheme.Conclusions and significanceClassification performance obtained using information and complexity measures shown better results than previous works over this dataset, encouraging the application of these features to characterize atrial electrograms.
Palabras clave: COMPLEX FRACTIONATED ATRIAL ELECTROGRAMS , INFORMATION THEORY , COMPLEXITY MEASURES , ATRIAL FIBRILLATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.543Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/106585
URL: https://linkinghub.elsevier.com/retrieve/pii/S1746809419303349
DOI: http://dx.doi.org/10.1016/j.bspc.2019.101753
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
Nicolet, Jonathan José Carlos; Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Classification of intracavitary electrograms in atrial fibrillation using information and complexity measures; Elsevier; Biomedical Signal Processing and Control; 57; 3-2020; 101753-1/9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES