Mostrar el registro sencillo del ítem
dc.contributor.author
Atum, Yanina Verónica
dc.contributor.author
Pacheco, Marianela
dc.contributor.author
Acevedo, Rubén Carlos
dc.contributor.author
Tabernig, Carolina
dc.contributor.author
Biurrun Manresa, José Alberto
dc.date.available
2020-06-02T14:16:10Z
dc.date.issued
2019-11
dc.identifier.citation
Atum, Yanina Verónica; Pacheco, Marianela; Acevedo, Rubén Carlos; Tabernig, Carolina; Biurrun Manresa, José Alberto; A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces; Springer Heidelberg; Medical And Biological Engineering And Computing; 11-2019
dc.identifier.issn
0140-0118
dc.identifier.uri
http://hdl.handle.net/11336/106460
dc.description.abstract
Brain computer interfaces (BCI) represent an alternative for patients whose cognitive functions are preserved, but are unable to communicate via conventional means. A commonly used BCI paradigm is based on the detection of event-related potentials, particularly the P300, immersed in the electroencephalogram (EEG). In order to transfer laboratory-tested BCIs into systems that can be used by at homes, it is relevant to investigate if it is possible to select a limited set of EEG channels that work for most subjects and across different sessions without a significant decrease in performance. In this work, two strategies for channel selection for a single-trial P300 brain computer interface were evaluated and compared. The first strategy was tailored specifically for each subject, whereas the second strategy aimed at finding a subject-independent set of channels. In both strategies, genetic algorithms (GAs) and recursive feature elimination algorithms were used. The classification stage was performed using a linear discriminant. A dataset of EEG recordings from 18 healthy subjects was used test the proposed configurations. Performance indexes were calculated to evaluate the system. Results showed that a fixed subset of four subject-independent EEG channels selected using GA provided the best compromise between BCI setup and single-trial system performance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN COMPUTER INTERFACE
dc.subject
CHANNEL SELECTION
dc.subject
P300
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-06-01T13:39:02Z
dc.journal.pais
Alemania
dc.description.fil
Fil: Atum, Yanina Verónica. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Pacheco, Marianela. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Acevedo, Rubén Carlos. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Tabernig, Carolina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Biurrun Manresa, José Alberto. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.journal.title
Medical And Biological Engineering And Computing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11517-019-02065-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11517-019-02065-z
Archivos asociados