Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces

Atum, Yanina Verónica; Pacheco, Marianela; Acevedo, Rubén Carlos; Tabernig, Carolina; Biurrun Manresa, José AlbertoIcon
Fecha de publicación: 11/2019
Editorial: Springer Heidelberg
Revista: Medical And Biological Engineering And Computing
ISSN: 0140-0118
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Médica

Resumen

Brain computer interfaces (BCI) represent an alternative for patients whose cognitive functions are preserved, but are unable to communicate via conventional means. A commonly used BCI paradigm is based on the detection of event-related potentials, particularly the P300, immersed in the electroencephalogram (EEG). In order to transfer laboratory-tested BCIs into systems that can be used by at homes, it is relevant to investigate if it is possible to select a limited set of EEG channels that work for most subjects and across different sessions without a significant decrease in performance. In this work, two strategies for channel selection for a single-trial P300 brain computer interface were evaluated and compared. The first strategy was tailored specifically for each subject, whereas the second strategy aimed at finding a subject-independent set of channels. In both strategies, genetic algorithms (GAs) and recursive feature elimination algorithms were used. The classification stage was performed using a linear discriminant. A dataset of EEG recordings from 18 healthy subjects was used test the proposed configurations. Performance indexes were calculated to evaluate the system. Results showed that a fixed subset of four subject-independent EEG channels selected using GA provided the best compromise between BCI setup and single-trial system performance.
Palabras clave: BRAIN COMPUTER INTERFACE , CHANNEL SELECTION , P300
Ver el registro completo
 
Archivos asociados
Tamaño: 1.200Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/106460
URL: http://link.springer.com/10.1007/s11517-019-02065-z
DOI: http://dx.doi.org/10.1007/s11517-019-02065-z
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
Atum, Yanina Verónica; Pacheco, Marianela; Acevedo, Rubén Carlos; Tabernig, Carolina; Biurrun Manresa, José Alberto; A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces; Springer Heidelberg; Medical And Biological Engineering And Computing; 11-2019
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES