Mostrar el registro sencillo del ítem

dc.contributor.author
Abril, Juan Carlos  
dc.date.available
2020-05-27T13:33:46Z  
dc.date.issued
2002-12  
dc.identifier.citation
Abril, Juan Carlos; Outliers, structural shifts and heavy-tailed distributions in state space time series models; Pakistan Journal of Statistics; Pakistan Journal of Statistics; 18; 1; 12-2002; 25-43  
dc.identifier.issn
1012-9367  
dc.identifier.uri
http://hdl.handle.net/11336/105976  
dc.description.abstract
In this work a general method is developed for handling outliers, structural shifts and heavy-tailed distributions in linear state space time series models. The basic tool we use for dealing with outliers and structural shifts is to model observation or state error densities by a mixture of densities, one component of which is a Gaussian density with a large variance. The other component can be a Gaussian density, a non-Gaussian density such as Student’s t or it can itself be a Gaussian mixture. The underlying idea is to estimate the state vector by its posterior mode using linearisation, iteration and the Kalman filter and smoother.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pakistan Journal of Statistics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
State Space  
dc.subject
Outliers  
dc.subject
Heavy Tails  
dc.subject
Structural Shifts  
dc.subject.classification
Economía, Econometría  
dc.subject.classification
Economía y Negocios  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Outliers, structural shifts and heavy-tailed distributions in state space time series models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-05-05T16:10:48Z  
dc.journal.volume
18  
dc.journal.number
1  
dc.journal.pagination
25-43  
dc.journal.pais
Pakistán  
dc.journal.ciudad
Lahore  
dc.description.fil
Fil: Abril, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina  
dc.journal.title
Pakistan Journal of Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.pakjs.com/1985-to-2016/