Artículo
Outliers, structural shifts and heavy-tailed distributions in state space time series models
Fecha de publicación:
12/2002
Editorial:
Pakistan Journal of Statistics
Revista:
Pakistan Journal of Statistics
ISSN:
1012-9367
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work a general method is developed for handling outliers, structural shifts and heavy-tailed distributions in linear state space time series models. The basic tool we use for dealing with outliers and structural shifts is to model observation or state error densities by a mixture of densities, one component of which is a Gaussian density with a large variance. The other component can be a Gaussian density, a non-Gaussian density such as Student’s t or it can itself be a Gaussian mixture. The underlying idea is to estimate the state vector by its posterior mode using linearisation, iteration and the Kalman filter and smoother.
Palabras clave:
State Space
,
Outliers
,
Heavy Tails
,
Structural Shifts
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Abril, Juan Carlos; Outliers, structural shifts and heavy-tailed distributions in state space time series models; Pakistan Journal of Statistics; Pakistan Journal of Statistics; 18; 1; 12-2002; 25-43
Compartir