Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Identification of the tension force in cables with insulators

Rango, Bruno JavierIcon ; Serralunga, Fernando J.; Piovan, Marcelo TulioIcon ; Ballaben, Jorge SebastianIcon ; Rosales, Marta BeatrizIcon
Fecha de publicación: 09/01/2019
Editorial: Springer
Revista: Meccanica
ISSN: 0025-6455
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

The present paper explores two approaches which, based on the measurement of the two first natural frequencies, allow the identification of the tension force in cables with insulators. For this purpose, the nonlinear mathematical model of the mechanical system and its Finite Element discretization are firstly stated. Besides, free-vibrations experiments on both a laboratory and a real-scale simulated configuration of cables with insulators are performed in order to derive their frequency response. During the laboratory experiments, a vision-based methodology is implemented for the register of the time series displacements of the cable. On this basis, a Bayesian approach is first addressed. In this framework, the cable tension is regarded as a random variable and the Bayes rule is applied to combine the experimental natural frequencies with the prior information about the random variable to derive the posterior distribution of the tension force. The Markov Chain Monte CarloMetropolis Hastings algorithm is implemented for the evaluation of the posterior distribution. On the other hand, a heuristic approach is proposed through the implementation of an Artificial Neural Network (ANN) as an inverse model between the parameters of the cable—including the natural frequencies—and its tension force. The training patterns are obtained from computational simulations of different cable configurations. The experimental natural frequencies are then applied to the trained ANNs to infer the tension force of the laboratory and real-scale configurations. Both approaches provide estimates of the tension force within admissible error margins.
Palabras clave: ARTIFICIAL NEURAL NETWORK , BAYESIAN INFERENCE , FORCE IDENTIFICATION , GUY CABLE , INSULATORS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.271Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/105863
DOI: http://dx.doi.org/10.1007/s11012-018-00941-w
URL: https://link.springer.com/article/10.1007/s11012-018-00941-w
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Rango, Bruno Javier; Serralunga, Fernando J.; Piovan, Marcelo Tulio; Ballaben, Jorge Sebastian; Rosales, Marta Beatriz; Identification of the tension force in cables with insulators; Springer; Meccanica; 54; 1-2; 9-1-2019; 33-46
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES