Mostrar el registro sencillo del ítem
dc.contributor.author
Canizo, Brenda Vanina
dc.contributor.author
Escudero, Leticia Belén
dc.contributor.author
Pellerano, Roberto Gerardo
dc.contributor.author
Wuilloud, Rodolfo German
dc.date.available
2020-05-12T19:40:52Z
dc.date.issued
2019-07
dc.identifier.citation
Canizo, Brenda Vanina; Escudero, Leticia Belén; Pellerano, Roberto Gerardo; Wuilloud, Rodolfo German; Data mining approach based on chemical composition of grape skin for quality evaluation and traceability prediction of grapes; Elsevier; Computers and Eletronics in Agriculture; 162; 7-2019; 514-522
dc.identifier.issn
0168-1699
dc.identifier.uri
http://hdl.handle.net/11336/104947
dc.description.abstract
The knowledge of wine origin is an important aspect in winemaking industries due to the Denomination of Controlled Origin. In this work, a data mining algorithms comparison study of grape-skin samples from five regions of Mendoza, Argentina, and builds classification models capable of predicting provenance based on multi-elemental composition, were developed. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine 29 elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Four classification techniques, including multinomial logistic regression (MLR), k-nearest neighbors (k-NN), support vector machines (SVM), and random forests (RF) were assessed. The best results were achieved for SVM and RF models, with 84% and 88.9% prediction accuracy, respectively, on the 10-fold cross validation. The RF variable importance showed that Rb (rubidium) was the most relevant components for prediction.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GRAPE-SKINS
dc.subject
MACHINE LEARNING
dc.subject
MINERAL CONTENT
dc.subject
PROVENANCE
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Data mining approach based on chemical composition of grape skin for quality evaluation and traceability prediction of grapes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-24T17:58:14Z
dc.journal.volume
162
dc.journal.pagination
514-522
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Canizo, Brenda Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; Argentina
dc.description.fil
Fil: Escudero, Leticia Belén. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
dc.description.fil
Fil: Wuilloud, Rodolfo German. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computers and Eletronics in Agriculture
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169918314248
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compag.2019.04.043
Archivos asociados