Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Data mining approach based on chemical composition of grape skin for quality evaluation and traceability prediction of grapes

Canizo, Brenda VaninaIcon ; Escudero, Leticia BelénIcon ; Pellerano, Roberto GerardoIcon ; Wuilloud, Rodolfo GermanIcon
Fecha de publicación: 07/2019
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

The knowledge of wine origin is an important aspect in winemaking industries due to the Denomination of Controlled Origin. In this work, a data mining algorithms comparison study of grape-skin samples from five regions of Mendoza, Argentina, and builds classification models capable of predicting provenance based on multi-elemental composition, were developed. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine 29 elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Four classification techniques, including multinomial logistic regression (MLR), k-nearest neighbors (k-NN), support vector machines (SVM), and random forests (RF) were assessed. The best results were achieved for SVM and RF models, with 84% and 88.9% prediction accuracy, respectively, on the 10-fold cross validation. The RF variable importance showed that Rb (rubidium) was the most relevant components for prediction.
Palabras clave: GRAPE-SKINS , MACHINE LEARNING , MINERAL CONTENT , PROVENANCE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.075Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/104947
URL: https://www.sciencedirect.com/science/article/pii/S0168169918314248
DOI: https://doi.org/10.1016/j.compag.2019.04.043
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Canizo, Brenda Vanina; Escudero, Leticia Belén; Pellerano, Roberto Gerardo; Wuilloud, Rodolfo German; Data mining approach based on chemical composition of grape skin for quality evaluation and traceability prediction of grapes; Elsevier; Computers and Eletronics in Agriculture; 162; 7-2019; 514-522
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES