Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Larotonda, Gabriel Andrés  
dc.date.available
2020-05-08T19:48:51Z  
dc.date.issued
2006-08  
dc.identifier.citation
Andruchow, Esteban; Larotonda, Gabriel Andrés; Nonpositively curved metric in the positive cone of a finite von Neumann algebra; Oxford University Press; Journal of the London Mathematical Society; 74; 1; 8-2006; 205-218  
dc.identifier.issn
0024-6107  
dc.identifier.uri
http://hdl.handle.net/11336/104669  
dc.description.abstract
In this paper we study the metric geometry of the space Σ of positive invertible elements of a von Neumann algebra. A with a finite, normal and faithful tracial state T. The trace induces an incomplete Riemannian  metric _a=T(ya^{-1}xa^{-1}), and though the techniques involved are quite different, the situation here resembles in many relevant aspects that of the n x n matrices when they are regarded as a symmetric space. For instance we prove that geodesics are the shortest paths for the metric induced, and that the geodesic distance is a convex function; we give an intrinsic (algebraic) characterization of the geodesically convex submanifolds M of Σ, and under suitable hypothesis we prove a factorization theorem for elements in the algebra that resembles the Iwasawa decomposition for matrices. This factorization is obtained via a nonlinear orthogonal projection π_M: Σ → M, a map which turns out to be contractive for the geodesic distance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FINITE VON NEUMANN ALGEBRA  
dc.subject
NONPOSITIVE CURVATURE  
dc.subject
POSITIVE CONE  
dc.subject
SHORT GEODESIC  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nonpositively curved metric in the positive cone of a finite von Neumann algebra  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-28T16:14:11Z  
dc.journal.volume
74  
dc.journal.number
1  
dc.journal.pagination
205-218  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Journal of the London Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1112/S0024610706022848  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0808.1774  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610706022848