Artículo
Nonpositively curved metric in the positive cone of a finite von Neumann algebra
Fecha de publicación:
08/2006
Editorial:
Oxford University Press
Revista:
Journal of the London Mathematical Society
ISSN:
0024-6107
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study the metric geometry of the space Σ of positive invertible elements of a von Neumann algebra. A with a finite, normal and faithful tracial state T. The trace induces an incomplete Riemannian metric _a=T(ya^{-1}xa^{-1}), and though the techniques involved are quite different, the situation here resembles in many relevant aspects that of the n x n matrices when they are regarded as a symmetric space. For instance we prove that geodesics are the shortest paths for the metric induced, and that the geodesic distance is a convex function; we give an intrinsic (algebraic) characterization of the geodesically convex submanifolds M of Σ, and under suitable hypothesis we prove a factorization theorem for elements in the algebra that resembles the Iwasawa decomposition for matrices. This factorization is obtained via a nonlinear orthogonal projection π_M: Σ → M, a map which turns out to be contractive for the geodesic distance.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Larotonda, Gabriel Andrés; Nonpositively curved metric in the positive cone of a finite von Neumann algebra; Oxford University Press; Journal of the London Mathematical Society; 74; 1; 8-2006; 205-218
Compartir
Altmétricas