Mostrar el registro sencillo del ítem
dc.contributor.author
Biagiola, Silvina Ines
dc.contributor.author
Figueroa, Jose Luis
dc.date.available
2020-05-06T22:08:50Z
dc.date.issued
2009-07
dc.identifier.citation
Biagiola, Silvina Ines; Figueroa, Jose Luis; Wiener and Hammerstein uncertain models identification; Elsevier Science; Mathematics And Computers In Simulation; 79; 11; 7-2009; 3296-3313
dc.identifier.issn
0378-4754
dc.identifier.uri
http://hdl.handle.net/11336/104451
dc.description.abstract
Block-oriented models have proved to be useful as simple nonlinear models for a vast number of applications. They are described as a cascade of linear dynamic and nonlinear static blocks. They have emerged as an appealing proposal due to their simplicity and the property of being valid over a larger operating region than a LTI model. In the description of these models, several approaches can be found in the literature to perform the identification process. In this sense, an important improvement is to achieve robust identification of blockoriented models to cope with the presence of uncertainty. In this article, we focus at two special and widely used types of uncertain block-oriented models: Hammerstein and Wiener models. They are assumed to be represented by a parametric representation. The approach herein followed allows to describe the uncertainty as a set of parameters which is found through the solution of an optimization problem. The identification algorithms are illustrated through a set of simple examples.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
WIENER MODELS
dc.subject
HAMMERSTEIN MODELS
dc.subject
NONLINEAR DENTIFICATION
dc.subject
UNCERTAINTY
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Wiener and Hammerstein uncertain models identification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-05-04T13:24:29Z
dc.journal.volume
79
dc.journal.number
11
dc.journal.pagination
3296-3313
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.description.fil
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.journal.title
Mathematics And Computers In Simulation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378475409001281
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.matcom.2009.05.004
Archivos asociados