Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Wiener and Hammerstein uncertain models identification

Biagiola, Silvina InesIcon ; Figueroa, Jose LuisIcon
Fecha de publicación: 07/2009
Editorial: Elsevier Science
Revista: Mathematics And Computers In Simulation
ISSN: 0378-4754
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Block-oriented models have proved to be useful as simple nonlinear models for a vast number of applications. They are described as a cascade of linear dynamic and nonlinear static blocks. They have emerged as an appealing proposal due to their simplicity and the property of being valid over a larger operating region than a LTI model. In the description of these models, several approaches can be found in the literature to perform the identification process. In this sense, an important improvement is to achieve robust identification of blockoriented models to cope with the presence of uncertainty. In this article, we focus at two special and widely used types of uncertain block-oriented models: Hammerstein and Wiener models. They are assumed to be represented by a parametric representation. The approach herein followed allows to describe the uncertainty as a set of parameters which is found through the solution of an optimization problem. The identification algorithms are illustrated through a set of simple examples.
Palabras clave: WIENER MODELS , HAMMERSTEIN MODELS , NONLINEAR DENTIFICATION , UNCERTAINTY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 899.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/104451
URL: https://www.sciencedirect.com/science/article/abs/pii/S0378475409001281
DOI: http://dx.doi.org/10.1016/j.matcom.2009.05.004
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Biagiola, Silvina Ines; Figueroa, Jose Luis; Wiener and Hammerstein uncertain models identification; Elsevier Science; Mathematics And Computers In Simulation; 79; 11; 7-2009; 3296-3313
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES