Artículo
An integral relationship for a fractional one-phase Stefan problem
Fecha de publicación:
08/2018
Editorial:
De Gruyter
Revista:
Fractional Calculus and Applied Analysis
ISSN:
1311-0454
e-ISSN:
1314-2224
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Roscani, Sabrina Dina; Tarzia, Domingo Alberto; An integral relationship for a fractional one-phase Stefan problem; De Gruyter; Fractional Calculus and Applied Analysis; 21; 4; 8-2018; 901-918
Compartir
Altmétricas