Mostrar el registro sencillo del ítem

dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2020-04-14T21:09:42Z  
dc.date.issued
2005-11  
dc.identifier.citation
Martínez, Ernesto Carlos; Statistical Simplex Method for Experimental Design in Process Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 44; 23; 11-2005; 8796-8805  
dc.identifier.issn
0888-5885  
dc.identifier.uri
http://hdl.handle.net/11336/102574  
dc.description.abstract
Experimental optimization with scarce and noisy process data is a key issue in laboratory automation for faster chemical process research and development, real-time process optimization, and the ability to embed a learning capability into the design of self-calibrating instruments and extremum-seeking controllers. To deal successfully with noise and uncontrollable factors in experimental design for process optimization, a statistical characterization of an optimum using process data is proposed. The Kendall?s tau statistic is used for identifying a minimum (maximum) in a data set as a cluster center of positively (negatively) correlated points. A new simplex search algorithm with a logic that resorts to correlation-based ranking of simplex vertices for reflection, expansion, contraction, and shrinking steps is proposed. The advantage of resorting to a data set that cumulatively provides a global perspective of the output landscape through Kendall?s tau calculations is a novel feature of the statistical simplex method. Encouraging results obtained for Rastringin?s multimodal function and in the optimization of the operating policy for a semibatch reactor are presented.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SIMPLEX METHOD  
dc.subject
EXPERIMENTAL OPTIMIZATION  
dc.subject
NOISY FUNCTION OPTIMIZATION  
dc.subject
PROCESS DEVELOPMENT  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Statistical Simplex Method for Experimental Design in Process Optimization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-13T13:16:39Z  
dc.journal.volume
44  
dc.journal.number
23  
dc.journal.pagination
8796-8805  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Industrial & Engineering Chemical Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ie050165m  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/ie050165m