Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Statistical Simplex Method for Experimental Design in Process Optimization

Martínez, Ernesto CarlosIcon
Fecha de publicación: 11/2005
Editorial: American Chemical Society
Revista: Industrial & Engineering Chemical Research
ISSN: 0888-5885
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Química

Resumen

Experimental optimization with scarce and noisy process data is a key issue in laboratory automation for faster chemical process research and development, real-time process optimization, and the ability to embed a learning capability into the design of self-calibrating instruments and extremum-seeking controllers. To deal successfully with noise and uncontrollable factors in experimental design for process optimization, a statistical characterization of an optimum using process data is proposed. The Kendall?s tau statistic is used for identifying a minimum (maximum) in a data set as a cluster center of positively (negatively) correlated points. A new simplex search algorithm with a logic that resorts to correlation-based ranking of simplex vertices for reflection, expansion, contraction, and shrinking steps is proposed. The advantage of resorting to a data set that cumulatively provides a global perspective of the output landscape through Kendall?s tau calculations is a novel feature of the statistical simplex method. Encouraging results obtained for Rastringin?s multimodal function and in the optimization of the operating policy for a semibatch reactor are presented.
Palabras clave: SIMPLEX METHOD , EXPERIMENTAL OPTIMIZATION , NOISY FUNCTION OPTIMIZATION , PROCESS DEVELOPMENT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 347.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/102574
URL: https://pubs.acs.org/doi/10.1021/ie050165m
DOI: https://doi.org/10.1021/ie050165m
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Martínez, Ernesto Carlos; Statistical Simplex Method for Experimental Design in Process Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 44; 23; 11-2005; 8796-8805
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES