Mostrar el registro sencillo del ítem

dc.contributor.author
Zozor, Steeve  
dc.contributor.author
Bosyk, Gustavo Martin  
dc.contributor.author
Portesi, Mariela Adelina  
dc.date.available
2020-04-07T20:36:15Z  
dc.date.issued
2014-11  
dc.identifier.citation
Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-49530229  
dc.identifier.issn
1751-8113  
dc.identifier.uri
http://hdl.handle.net/11336/102214  
dc.description.abstract
We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ENTROPIC UNCERTAINTY RELATION  
dc.subject
GENERALIZED SALICRU ENTROPIES  
dc.subject
PURE AND MIXED STATES  
dc.subject
QUDITS  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
General entropy-like uncertainty relations in finite dimensions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-02T14:59:01Z  
dc.journal.volume
47  
dc.journal.number
49  
dc.journal.pagination
49530201-49530229  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Zozor, Steeve. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Portesi, Mariela Adelina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.journal.title
Journal of Physics A: Mathematical and Theoretical  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/49/495302/article  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1751-8113/47/49/495302