Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

General entropy-like uncertainty relations in finite dimensions

Zozor, Steeve; Bosyk, Gustavo MartinIcon ; Portesi, Mariela AdelinaIcon
Fecha de publicación: 11/2014
Editorial: IOP Publishing
Revista: Journal of Physics A: Mathematical and Theoretical
ISSN: 1751-8113
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

We revisit entropic formulations of the uncertainty principle (UP) for an arbitrary pair of positive operator-valued measures (POVM) A and B, acting on finite dimensional Hilbert space. Salicrú generalized (h, ) ϕ -entropies, including Rényi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (ccc A B AB ,, ) , with cA (respectively cB) being the overlap between the elements of the POVM A (respectively B) and cA B, the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and Sánchez-Ruiz (2008 Phys. Rev. A 77 042110) and consists in a minimization of the entropy sum subject to the Landau–Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with Rényi or Tsallis entropic formulations of the UP, we overcome the Hölder conjugacy constraint imposed on the entropic indices by the Riesz–Thorin theorem. In the case of nondegenerate observables, we show that for given cA B, > 1 2 , the bound obtained is optimal; and that, for Rényi entropies, our bound improves Deutsch one, but Maassen–Uffink bound prevails when cA B, ⩽ 1 2 . Finally, we illustrate by comparing our bound with known previous results in particular cases of Rényi and Tsallis entropies.
Palabras clave: ENTROPIC UNCERTAINTY RELATION , GENERALIZED SALICRU ENTROPIES , PURE AND MIXED STATES , QUDITS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.711Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/102214
URL: http://iopscience.iop.org/1751-8121/47/49/495302/article
DOI: http://dx.doi.org/10.1088/1751-8113/47/49/495302
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Zozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; General entropy-like uncertainty relations in finite dimensions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 49; 11-2014; 49530201-49530229
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES