Mostrar el registro sencillo del ítem
dc.contributor.author
Alegre Cortés, Javier
dc.contributor.author
Soto Sánchez, Cristina
dc.contributor.author
Albarracin, Ana Lia
dc.contributor.author
Farfan, Fernando Daniel
dc.contributor.author
Val Calvo, Mikel
dc.contributor.author
Ferrandez, José M.
dc.contributor.author
Fernandez, Eduardo
dc.date.available
2020-04-03T19:34:25Z
dc.date.issued
2018-01-10
dc.identifier.citation
Alegre Cortés, Javier; Soto Sánchez, Cristina; Albarracin, Ana Lia; Farfan, Fernando Daniel; Val Calvo, Mikel; et al.; Toward an improvement of the analysis of neural coding; Frontiers Research Foundation; Frontiers in Neuroinformatics; 11; 77; 10-1-2018; 1-6
dc.identifier.issn
1662-5196
dc.identifier.uri
http://hdl.handle.net/11336/101936
dc.description.abstract
Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time–Frequency (T–F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T–F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T–F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain–machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Research Foundation
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NEURAL CODING
dc.subject
NON-LINEAR SIGNALS
dc.subject
NA-MEMD
dc.subject
MACHINE LEARNING CLASSIFICATION
dc.subject
SINGLE TRIAL CLASSIFICATION
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Toward an improvement of the analysis of neural coding
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-16T19:28:23Z
dc.identifier.eissn
1662-5196
dc.journal.volume
11
dc.journal.number
77
dc.journal.pagination
1-6
dc.journal.pais
Suiza
dc.journal.ciudad
Lausanne
dc.description.fil
Fil: Alegre Cortés, Javier. Universidad de Miguel Hernández; España
dc.description.fil
Fil: Soto Sánchez, Cristina. Universidad de Alicante; España. Universidad de Miguel Hernández; España. Centro de Redes de Investigación Biomédica en Bioingeniería, Biomateriales y Nanomedicina; España
dc.description.fil
Fil: Albarracin, Ana Lia. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
dc.description.fil
Fil: Farfan, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
dc.description.fil
Fil: Val Calvo, Mikel. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Ferrandez, José M.. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Fernandez, Eduardo. Centro de Redes de Investigación Biomédica en Bioingeniería, Biomateriales y Nanomedicina; España. Universidad de Miguel Hernández; España
dc.journal.title
Frontiers in Neuroinformatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fninf.2017.00077/full
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3389/fninf.2017.00077
Archivos asociados